期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Geological Hazards and Risk Management. 2025; 1: (1) ; 23-29 ; DOI: 10.12208/j.ghrm.20250005.

Performance analysis of flameproof submersible pump for mining application
矿用隔爆型潜水泵性能分析

作者: Ayuba Elkanah Jatau1, Israel Enock Ojo2, Elvis Adam Alhassan3, Israel Enema Ohiemi4 *, Kolo Yetu Babazhitsu2

1 尼日尔国立理工学院机械工程技术系 尼日利亚

2 尼日利亚尼日尔州比达联邦理工学院机械工程系 尼日利亚

3 CK Tedam科技应用大学数学科学学院科学纳夫龙戈上东部地区 加纳

4 尼日利亚大学机械工程系 尼日利亚

*通讯作者: Israel Enema Ohiemi,单位: 尼日利亚大学机械工程系 尼日利亚;

发布时间: 2025-06-11 总浏览量: 46

摘要

本文旨在预测和比较具有相同设计参数但不同运行阶段的隔爆泵的性能。首先,对两个泵壳A和B进行建模。其次,使用剪切应力输送(SST)湍流模型求解三维纳维-斯托克斯方程。获取性能特征并与实验数据进行比较。绘制了设计点的压力云图,以描绘其内部流动特性。研究发现,泵壳A的运行功率更大,因此比泵壳B消耗更多能量。进一步 分析表明,B泵运行效率更高,但结构更复杂。最后,利用实验数据验证了数值模拟的正确性。

关键词: 隔爆潜水泵;性能;仿真;流固耦合;优化

Abstract

This paper seeks to predict and compare the performance of flameproof pumps same design parameters but with different operation stages. Firstly, two pump cases A and B were modelled. Secondly, the shear stress transport (SST) turbulence model was used to solve the 3D Navier Stokes equation. The performance characteristics were obtained and compared with experimental data. The pressure contours are plotted at the design point to delineate its internal flow characteristics. Pump case A was found to require more power for its operation and would hence consume more energy than pump case B. Further analysis shows that pump B is more efficient in operation, but with complex configuration. Lastly, the numerical simulations were validated with experimental data.

Key words: Flameproof submersible pump; Performance; Simulation; Fluid-Structure interaction; Optimization

参考文献 References

[1] J. F. Gülich. (2014). Centrifugal Pumps, Springer Berlin Heidelberg,Berlin,Heidelberg,2014. https://doi.org/10.1007/ 978-3-642-40114-5.

[2] Y. Wu, X. Xiao, Z. Song. (2017). Competitiveness analysis of coal industry in China: A diamond model study. Resour. Policy.52(2017). https://doi.org/10.1016/j.resourpol.2017.01.015.

[3] J. Liu, T. Yang, L. Wang, X. Chen. (2020). Research progress in coal and gas co‐mining modes in China. EnergySci.Eng.,8 (2020). https://doi.org/10.1002/ese3.739.

[4] I. Drăghici, C. Atănăsoaiei, A. Bosioc, S. Muntean, L. E. Anton. (2017). Experimental Analysis of the Global Performances for a Pump with Symmetrical Suction Elbow at Two Speeds. Energy Procedia, 112(2017), 225-231. https://doi.org/10.1016/j.egypro.2017.03.1090.

[5] A.-M. Georgescu, C.-I. Cosoiu, S. Perju, S.-C. Georgescu, L. Hasegan, A. Anton. (2014). Estimation of the Efficiency for Vari-able Speed Pumps in EPANET Compared with Experimental Data. Procedia Eng., 89(2014), 1404-1411. https://doi.org/10.1016/j.proeng.2014.11.466.

[6] Rakibuzzaman, S.-H. Suh, K., Kyung-Wuk, H.-H. Kim, M.T. Cho, I.S. Yoon. (2015). A Study on Multistage Centrifugal Pump Performance Characteristics for Variable Speed Drive System. Procedia Eng., 105(2015), 270-275. https://doi.org/10.1016/j.proeng.2015.05.109.

[7] Y. Bai, F. Kong, F. Zhao, J. Wang, B. Xia, Q. Hu. (2018). Experiments and Numerical Simulation of Performances and Internal Flow for High-Speed Rescue Pump with Variable Speeds. Math. Probl. Eng., 2018(2018), 1-18. https://doi.org/10.1155/2018/9168694.

[8] H. Pineda, J. Biazussi, F. López, B. Oliveira, R. D. M. Carvalho, A. C. Bannwart, N. Ratkovich. (2016). Phase distribution anal-ysis in an Electrical Submersible Pump (ESP) inlet handling water—air two-phase flow using Computational Fluid Dynamics (CFD). J. Pet. Sci. Eng., 139(2016),49-61. https://doi.org/10.1016/j.petrol.2015.12.013.

[9] M. Zhang, D. Valentin, C. Valero, A. Presas, M. Egusquiza, E. Egusquiza. (2020). Experimental and numerical investigation on the influence of a large crack on the modal behaviour of a Kaplan turbine blade. Eng. Fail. Anal., 109(2020). https://doi.org/10.1016/j.engfailanal.2020.104389.

[10] N. Zhang, M. Yang, B. Gao, Z. Li, D. Ni. (2015). Experimental and numerical analysis of unsteady pressure pulsation in a cen-trifugal pump with slope volute. J. Mech. Sci.Technol.,29(2015),4231-4238. https://doi.org/10.1007/s12206-015-0919-y.

[11] H. Jian, W. Kaiqiang, W. Chao, G. Lang, G. Chunyu. (2021). Prediction of hydrodynamic performance of pump jet propulsor considering the effect of gap flow model. OceanEng.,233(2021),109162. https://doi.org/10.1016/j.oceaneng.2021.109162.

[12] J. Wang, Z. Huang. (2017). The Recent Technological Development of Intelligent Mining in China. Engineering, 3(2017),439-444. https://doi.org/10.1016/J.ENG.2017.04.003.

[13] F. Menter. (1993). Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows, in: 23rd Fluid Dyn. Plasmadynamics, Lasers Conf., American Institute of Aeronautics and Astronautics, Reston, Virigina, 1993. https://doi.org/10.2514/6.1993-2906.

[14] D. C. Wilcox. (1994). Simulation of Transition with a Two-EquationTurbulenceModel,AIAAJ.32(1994). https://doi.org/10.2514/3.59994.

[15] M. Böhle, A. Fleder, M. Mohr. (2019). Study of the losses in fluid machinery with the help of entropy. Open Arch. 16th Int. Symp. Transp. Phenom. Dyn. Rotating Mach. ISROMAC 2016. (2019).

[16] M. H. Sotoude Haghighi, S. M. Mirghavami, S. F. Chini, A. Riasi. (2019). Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades. Renew. Energy., 135(2019), 266-276. https://doi.org/10.1016/j. renene.2018.12.024.

[17] M. Hadi, S. Haghighi, S. M. Mirghavami, M. M. Ghorani, A. Riasi, S. F. Chini. (2020). A numerical study on the performance of a superhydrophobic coated very low head (VLH) axial hydraulic turbine using entropy generation method. Renew. Energy., 147(2020), 409-422. https://doi.org/10.1016/j.renene.2019.09.003.

[18] I. B. Celik, et al. (2008). Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. J. Fluids Eng., 130(2008), 078001. https://doi.org/10.1115/1.2960953.

[19] J. Pei, F. Zhang, D. Appiah, B. Hu, S. Yuan, K. Chen, S. N. Asomani. (2019). Performance prediction based on effects of wrap-ping angle of a side channel pump. Energies, 12(2019). https://doi.org/10.3390/en12010139.

引用本文

AyubaElkanahJatau, IsraelEnockOjo, ElvisAdamAlhassan, IsraelEnemaOhiemi, KoloYetuBabazhitsu, 矿用隔爆型潜水泵性能分析[J]. 地质灾害与风险管理, 2025; 1: (1) : 23-29.